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Abstract

We introduce inverses of the harmonic oscillator

creation and annihilaton operators by their actions on the

number states. Three of the two photon annihilation operators,

^+-I ^ ^^+-I _2,vlz., a a, aa and have normallzable right elgenstates

with non vanishing eigenvalues. We discuss the eigenvalue

equation of these operators and obtain their normalized

eigenstates. We find that the Fock state representation, in

each case separates into two sets of states, one involving only

the even number states while the other involving only the odd

number states. We show that the even set of eigenstates of the
^÷_i ^ ^

operator a a is the customary squeezed vacuum S(c)]O>.

1 Introduction

In quantum optics several different representations of the harmonic

oscillator states have been discussed such as number states, coherent

states [I], squeezed states [2-4], squeezed number states [5], near

number states [6], and photon added coherent states [7]. The basic
^ ^_

operators are the boson annihilation and creation operators a and a ,

satisfying the usual commutation relation [a,&+] = I. These

operators are defined in terms of their actions on number states as

^

a[n> = nl/2In - I>, (I. I)
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a+]n> = (n + 1)I/2{n + 1>. (1.2)

^ ^+

One may introduce the generalized inverses [8] of a and a :

^-1{n> (n + I)-i/21n + I>,a = (1.3)

_+-11n> (1 _ ) (n)a = --

n,O

-1/21n - 1>, (1.4)

^-i ^+-I
The operator a behaves as a creation operator whereas a behaves

^--1

as an annihilation operator. Further a is the right inverse of a

^4--- 1 ^4-
and a is the left inverse of a , i.e.,

^^-1 ^+-1^+
aa = a a = I. (1.5)

^-i ^ ^+^+-I
On the other hand a a and a a give

^-1 ^ ^+^+-I
I 0><0 J

a a = a a = - t, (1.6)

where Io><olis the projection operator on the vacuum.

^+2
Five of the operators exhibiting two photon processes, viz., a ,

^-2 ^+-2 ^+^-1 ^-1^+
a , a , a a and a a do not have any normalizable right

eigenstate with non-zero eigenva!ue. We can solve the eigenvalue

^+-1 ^ ^^+-1 a 2.problem for the remaining three, viz., a a, aa and These

three are the two photon annihilation operators (TAO). The matrix

representation of these TAOs may readily be obtained by noting their

actions on the number states In>. Using Eqs.(1.1)-(1.4) we obtain,

for n z 2

^4.--I ^

a aln> = [n/(n-1)]i/21n-2>, (1.7)

^^4.--i

aa In> = [(n - 1)/n]I/21n-2>,

^21n> [n(n -1)T1/21n-2>,a =

(1.8)

(1,9)
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whereas their action on In> with n = 0 or 1 gives zero. We,

therefore, find the following matrix elements for these operators:

<mla+-l_In> = [n/(n- 1)]
I/2

(I. I0)
m, n-2'

<mlaa +-IIn> : [(n - l)/n]
1/2

8 (1.11)
m, n-2 '

<ml_21n> = [n(n - I)]
I/2

(1.12)

We now consider the eigenvalue problem for these TAOs in detail.

A+_I_

2 Elgenstates of a a

^÷_1 ^
We write an eigenvalue equation for the operator a a as:

^+--I ^

a al; ,l>= (2.1)

^÷_1 ^
where IA, I> is a right elgenstate of the first TAO a a with

eigenvalue A and obtain a solution for suitable complex number k.

Expressing ]k,l> in the form

= Cnln>
n=o

(2.2)

we obtain the following recurrence relation for C
n

C = A [(n - 1)/n] I/2
n Cn_ 2 • (2.3)

From this recurrence relatlon it is observed that the eigenstates

IA, I> separate into two sets of states involving either even number

states or odd number states as follows:

[(2n)!] 1/2

[k,+l> = N+ _ knl2n>
n=O 2nn!

(2.4)
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and

= 2 n n!

Ik,-l> = N_ _ 1/2knl2n + 1>.
n=O [(2n + 1)!]

Here N+ and N_ are the normalization constants given by

(2.5)

N+ = (1 - tkl2) 1/4 , tkl < 1, (2.6)

[x](I-IAI2)I/2 I/2,
N_= [ s,n-1 IAI ] IAI <1.

(2.7)

Both of the states IA,+I> and IA,-l> correspond to the same

elgenvalue A and hence any linear combinatlon of these states is the

^÷_1 ^
general elgenstate of the TAO a a.

AA+-- 1
3 Elgenstates of aa

We write the elgenvalue equation for this operator as

^^+-I

aa IA,2> = kIA,2>, (3.1)

^^÷-1
where ]k,2> Is the right elgenstate of the second operator aa with

an elgenvalue A. Proceeding in a manner strictly analogous to that

followed In Sec.2, we find that these elgenstates also separate into

two sets, one involving even number states and the other involving

odd number states

2nn!

An
IA,+2> = M+ _ ]1/2 12n>n=O [(2n)!

(3.2)

and

= [(2n + I)!] 1/2

IA,-2> = S
-n=o 2nn!

Anl2n + 1>, (3.3)
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where M+ and M_ are the normalization constants given by

(I-{;_12)312 I,,2
[ ], ,M÷ = (I-IA12)I12÷IAIsin-I IAI I_'I< I (3.4)

M_= [1 - [A.[2]3/4 , IAI < 1. (3.5)

A general eigenstate of the TAO (_+-I) is a linear combination o£

the states IA,+2> and {A,-2>.

"2
4 Etgenstates of a

Coherent states are the right eigenstates of the annihilation
^

operator a, and so that of &2 also. These states [9] separate neatly
^2

into the even and odd parts both being the elgenstates of a , as in
^2

the case of the other TAOs. Hence the normalized eigenstates of a

with eigenvalue X can be expressed in the form

{A,+3> = (cosh {A{)

An
-I/2

)":" 1/212n>
n=o [(2n)!]

(4.1)

and

sin {A{]-1/2. An• _ 1/212n+1>. (4.2)Ix,-3> = IAI _=o [(2n+1)!]

Any linear superposltlon of {_,+3> and {_,-3> states is an

eigenstate of _2. Of course, a particular linear combination happens

to be the coherent state [(_)I/2>. Further there is no restriction on

thevalueof {A{,whereasinthee_llerc_es {_{_s restrictedto
be less than I.

A+--i_

S Squeezed Vacuum as an Eigenstate of a a

It is interesting to note that the state {k,+l> [Eq.(2.4)] is

essentially the squeezed vacuum discussed in literature [3, I0-12].
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The squeezed vacuum is generated by the action of
^

operator S(_r) on vacuum

^

s(_)Io> = exp [I/2 (_÷2_ "a2)]lo>.

the squeeze

(s.i)

Using the normal ordered form of the operator S(v) we find the number

state representation of the squeezed vacuum as

S(_)IO> = (coshr) -I/2 x

where the squeeze parameter

we find that

1/2
[(2n)!]

n=O 2nn!
(eie tanhr)nI2n>, (5.2)

le
= r e Comparing Eqs.(2.4) and (5.2)

= (5.3)

where the eigenvalue A is related to the squeeze parameter _ by

i8
k = e tanhr. (5.4)

Hence we conclude that the squeezed vacuum is an eigenstate of our

^÷--i ^

TAO a a. In a similar manner we can show that the squeezed first
^^+-I

number state S(v)In=l> is an eigenstate II,-2> of the operator aa
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